Friday, December 14, 2018

Large-scale ab initio simulations of MAS DNP enhancements using a Monte Carlo optimization strategy #DNPNMR

Perras, Frédéric A., and Marek Pruski. “Large-Scale Ab Initio Simulations of MAS DNP Enhancements Using a Monte Carlo Optimization Strategy.” The Journal of Chemical Physics 149, no. 15 (October 21, 2018): 154202.


Magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) has recently emerged as a powerful technology enabling otherwise unrealistic solid-state NMR experiments. The simulation of DNP processes which might, for example, aid in refining the experimental conditions or the design of better performing polarizing agents, is, however, plagued with significant challenges, often limiting the system size to only 3 spins. Here, we present the first approach to fully ab initio large-scale simulations of MAS DNP enhancements. The Landau-Zener equation is used to treat all interactions concerning electron spins, and the low-order correlations in the Liouville space method is used to accurately treat the spin diffusion, as well as its MAS speed dependence. As the propagator cannot be stored, a Monte Carlo optimization method is used to determine the steady-state enhancement factors. This new software is employed to investigate the MAS speed dependence of the enhancement factors in large spin systems where spin diffusion is of importance, as well as to investigate the impacts of solvent and polarizing agent deuteration on the performance of MAS DNP.