Wednesday, October 25, 2017

Dynamic Nuclear Polarization of Long-Lived Nuclear Spin States in Methyl Groups


Dumez, J.-N., et al., Dynamic Nuclear Polarization of Long-Lived Nuclear Spin States in Methyl Groups. The Journal of Physical Chemistry Letters, 2017. 8(15): p. 3549-3555.


We have induced hyperpolarized long-lived states in compounds containing 13C-bearing methyl groups by dynamic nuclear polarization (DNP) at cryogenic temperatures, followed by dissolution with a warm solvent. The hyperpolarized methyl long-lived states give rise to enhanced antiphase 13C NMR signals in solution, which often persist for times much longer than the 13C and 1H spin–lattice relaxation times under the same conditions. The DNP-induced effects are similar to quantum-rotor-induced polarization (QRIP) but are observed in a wider range of compounds because they do not depend critically on the height of the rotational barrier. We interpret our observations with a model in which nuclear Zeeman and methyl tunnelling reservoirs adopt an approximately uniform temperature, under DNP conditions. The generation of hyperpolarized NMR signals that persist for relatively long times in a range of methyl-bearing substances may be important for applications such as investigations of metabolism, enzymatic reactions, protein–ligand binding, drug screening, and molecular imaging.