Friday, December 27, 2013

Magic-Angle Spinning NMR of Cold Samples

Solid-state DNP experiments are often performed at cryogenic temperatures and this article is an excellent review about the current technologies to spin samples at (very) low temperatures.

ConcistrĂˆ, M., et al., Magic-Angle Spinning NMR of Cold Samples. Acc. Chem. Res., 2013.

Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature.