Monday, May 20, 2013

Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance

Colell, J., et al., Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance. Phys. Rev. Lett., 2013. 110(13): p. 137602.


We report new phenomena in low-field ^{1}H nuclear magnetic resonance (NMR) spectroscopy using parahydrogen induced polarization (PHIP), enabling determination of chemical shift differences, deltanu, and the scalar coupling constant J. NMR experiments performed with thermal polarization in millitesla magnetic fields do not allow the determination of scalar coupling constants for homonuclear coupled spins in the inverse weak coupling regime (deltanu<J). We show here that low-field PHIP experiments in the inverse weak coupling regime enable the precise determination of deltanu and J. Furthermore we experimentally prove that observed splittings are related to deltanu in a nonlinear way. Naturally abundant ^{13}C and ^{29}Si isotopes lead to heteronuclear J-coupled ^{1}H-multiplet lines with amplitudes significantly enhanced compared to the amplitudes for thermally prepolarized spins. PHIP-enhanced NMR in the millitesla regime allows us to measure characteristic NMR parameters in a single scan using samples containing rare spins in natural abundance.